Explicit Isogenies of Prime Degree Over Quadratic Fields

نویسندگان

چکیده

Let $K$ be a quadratic field which is not an imaginary of class number one. We describe algorithm to compute the primes $p$ for there exists elliptic curve over admitting $K$-rational $p$-isogeny. This builds on work David, Larson-Vaintrob, and Momose. Combining this with Bruin-Najman, \"{O}zman-Siksek, most recently Box, we determine above set three fields $\mathbb{Q}(\sqrt{-10})$, $\mathbb{Q}(\sqrt{5})$, $\mathbb{Q}(\sqrt{7})$, providing first such examples after Mazur's 1978 determination $K = \mathbb{Q}$. The termination relies Generalised Riemann Hypothesis.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irregularity of Prime Numbers over Real Quadratic Fields

The concept of regular and irregular primes has played an important role in number theory at least since the time of Kummer. We extend this concept to the setting of arbitrary totally real number fields k0, using the values of the zeta function ζk0 at negative integers as our “higher Bernoulli numbers”. Once we have defined k0-regular primes and the index of k0-irregularity, we discuss how to c...

متن کامل

Explicit Computation of Gross-stark Units over Real Quadratic Fields

We present an effective and practical algorithm for computing Gross-Stark units over a real quadratic base field F. Our algorithm allows us to explicitly construct certain relative abelian extensions of F where these units lie, using only information from the base field. These units were recently proved to always exist within the correct extension fields of F by Dasgupta, Darmon, and Pollack, w...

متن کامل

Explicit isogenies in quadratic time in any characteristic

Consider two ordinary elliptic curves E,E′ defined over a finite field Fq, and suppose that there exists an isogeny ψ between E and E′. We propose an algorithm that determines ψ from the knowledge of E, E′ and of its degree r, by using the structure of the `-torsion of the curves (where ` is a prime different from the characteristic p of the base field). Our approach is inspired by a previous a...

متن کامل

Structure of finite wavelet frames over prime fields

‎This article presents a systematic study for structure of finite wavelet frames‎ ‎over prime fields‎. ‎Let $p$ be a positive prime integer and $mathbb{W}_p$‎ ‎be the finite wavelet group over the prime field $mathbb{Z}_p$‎. ‎We study theoretical frame aspects of finite wavelet systems generated by‎ ‎subgroups of the finite wavelet group $mathbb{W}_p$.

متن کامل

HYPERELLIPTIC MODULAR CURVES X0(n) AND ISOGENIES OF ELLIPTIC CURVES OVER QUADRATIC FIELDS

Let n be an integer such that the modular curve X0(n) is hyperelliptic of genus ≥ 2 and such that the Jacobian of X0(n) has rank 0 over Q. We determine all points of X0(n) defined over quadratic fields, and we give a moduli interpretation of these points. As a consequence, we show that up to Q-isomorphism, all but finitely many elliptic curves with n-isogenies over quadratic fields are in fact ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2022

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnac134